The Emerging Threat of Zika Virus and the Public Health Response

Benjamin Schwartz, MD
Acute Communicable Disease Control Program
Los Angeles County Department of Public Health

February 22, 2017
Emergence of Zika Virus

- **1947** – Rhesus 766 develops a fever
- **1956** – First cluster of cases in Nigeria
- **1970-80s** – Sporadic reports of infections
- **2007** – Outbreak on Yap Island, Micronesia
- **2013** – Outbreak in French Polynesia
- **2014** – Outbreaks in Brazil and Latin America
Global Spread of Zika

How the Zika virus spread

- **Active transmission**
- **Known previous transmission**
- **Antibodies also detected**

- **2014-16**: Zika appears in northern Brazil and spreads through the Americas
- **2013**: Epidemic on French Polynesia
- **1960**: First human cases in Nigeria
- **1970s**: Cases in Pakistan, India, Malaysia, and Indonesia
- **1947**: First documented in monkeys in Uganda
- **2007**: Epidemic on island of Yap, Micronesia

SOURCE: WHO and Lancaster University, Feb. 1
Zika Virus Transmission Cycle

Zika Virus Transmission Cycles

Sylvatic (jungle) cycle

Epidemic (urban) cycle
Zika Virus Clinical Illness

- About 80% of infections asymptomatic
- Symptoms 3-12 d post exposure
- Symptomatic illness mild, lasting <1 week
- Rare hospitalization & death
- Symptoms/signs from 683 cases from Puerto Rico shown in the Table
 - 9 with thrombocytopenia and 5 with Guillain-Barre Syndrome

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rash</td>
<td>74%</td>
</tr>
<tr>
<td>Myalgia</td>
<td>68%</td>
</tr>
<tr>
<td>Arthralgia</td>
<td>63%</td>
</tr>
<tr>
<td>Fever</td>
<td>63%</td>
</tr>
<tr>
<td>Headache</td>
<td>63%</td>
</tr>
<tr>
<td>Eye pain</td>
<td>51%</td>
</tr>
<tr>
<td>Chills</td>
<td>50%</td>
</tr>
<tr>
<td>Sore throat</td>
<td>34%</td>
</tr>
<tr>
<td>Petichiae</td>
<td>31%</td>
</tr>
<tr>
<td>Conjunctivitis</td>
<td>20%</td>
</tr>
</tbody>
</table>

CDC MMWR, April 29, 2016
Zika Conjunctivitis and Rash
Zika Virus Congenital Infection

- Series of 72 Zika pos. pregnant women from Rio de Janeiro
- All women with symptomatic infection
- Of 42 women with ultrasound, 12 (29%) were abnormal
 - Fetal death (36 and 38 wks gestation)
 - *In utero* growth restriction
 - Microcephaly
 - Cerebral calcification
 - Other abnormalities (ocular defect, CNS lesions, reduced cerebral or umbilical artery flow, abnormal amniotic fluid volume)
- Of 8 births, only 2 were normal

Risk of Microcephaly with Zika

- French Polynesia (2013-14)
 - First trimester risk of microcephaly estimated at 0.95% (95% CI 0.34 – 1.91)

- Bahia, Brazil (2015-16)
 - Based on various estimates of infection rate, over-reporting, and baseline microcephaly risk, estimate first trimester microcephaly rate from 0.88% to 13.2%
 - Microcephaly in 2nd and 3rd trimesters – “negligible association”

Johansson, NEJM 2016
Polling Question: Perception of Zika

Given the 1% to 13% risk of microcephaly, what’s your perception of the level of concern Zika has engendered in the U.S.?

A. The concern is exaggerated as so few infants will get this defect

B. The concern is appropriate and about the right level

C. We should be more concerned since Zika is likely to spread and even 1% would be a lot of infants
Congenital Zika Syndrome

• Severe microcephaly (<3 SD below mean) – consistent with fetal brain disruption sequence (overlapping cranial sutures, redundant scalp skin, severe neurological impairment)

• Subcortical calcifications, cortical thinning, decreased myelination, consistent with neural cell injury & death

• Ocular abnormalities – optic nerve atrophy, chorioretinal mottling and atrophy

• Congenital contractures – arthrogryposis, clubfoot, hip dislocation associated with motor neuron involvement
Congenital Zika Syndrome

Microcephaly from fetal brain disruption

Optic nerve hypoplasia and chorioretinal scar

Congenital contractures

Other Neurological Findings of Zika Infection

• In series of infants with microcephaly, ocular findings in 35% and hearing loss in 10%
 – Unclear how often these occur in infants without microcephaly

• Guillain-Barre syndrome

• Case reports of encephalitis and encephalomyelitis in adults

• Currently no evidence of abnormal post-natal neurological development associated with congenital infection
Zika Surveillance

- Clinical suspicion, laboratory diagnosis

- Why Zika cases may go unrecognized:
 - Infection often asymptomatic (80%)
 - Ill person may not seek medical care
 - Doctor may not think of Zika or send a test
Zika Testing and Reporting

- Testing recommended 1) for all pregnant women exposed through travel to an affected area or by sexual contact; 2) others with Zika consistent symptoms and an exposure history; 3) all infants of Zika infected moms

- Lab testing available at the Public Health Lab and commercially
Zika Cases by Jurisdiction

LAC – 2016; other through end of January February 2017

<table>
<thead>
<tr>
<th>Jurisdiction</th>
<th>Total cases</th>
<th>Pregnant women</th>
<th>Local transmission</th>
<th>Sexually acquired</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA County</td>
<td>96</td>
<td>14</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>California</td>
<td>486</td>
<td>81</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>US States/DC</td>
<td>4,973</td>
<td>1,394*</td>
<td>220</td>
<td>41</td>
</tr>
<tr>
<td>US Territories</td>
<td>36,414</td>
<td>3,071</td>
<td>36,274</td>
<td>NA</td>
</tr>
</tbody>
</table>

*999 completed pregnancies, 43 known with birth defects
Demographics of LAC Zika Patients (n=96)

<table>
<thead>
<tr>
<th>Gender</th>
<th>N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>25 (26%)</td>
</tr>
<tr>
<td>Female</td>
<td>71 (74%)</td>
</tr>
<tr>
<td>Pregnant</td>
<td>14 (15%)</td>
</tr>
<tr>
<td>Non-pregnant</td>
<td>57 (59%)</td>
</tr>
</tbody>
</table>

Age group distribution:
- 0 - 9: 17
- 10 - 19: 30
- 20 - 39: 25
- 40 +: 10

Month distribution:
- June: 4
- July: 22
- August: 17
- September: 10
- October: 5
- November: 3
- December: 1
LAC Zika Cases’ Country of Exposure

<table>
<thead>
<tr>
<th>Country</th>
<th>Number (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mexico</td>
<td>25 (26%)</td>
</tr>
<tr>
<td>Nicaragua</td>
<td>15 (16%)</td>
</tr>
<tr>
<td>Guatemala</td>
<td>13 (14%)</td>
</tr>
<tr>
<td>Honduras</td>
<td>9 (9%)</td>
</tr>
<tr>
<td>El Salvador</td>
<td>7 (7%)</td>
</tr>
<tr>
<td>Dominican Republic</td>
<td>7 (7%)</td>
</tr>
<tr>
<td>Puerto Rico</td>
<td>4 (4%)</td>
</tr>
<tr>
<td>Jamaica</td>
<td>3 (3%)</td>
</tr>
<tr>
<td>Costa Rica</td>
<td>3 (3%)</td>
</tr>
<tr>
<td>Virgin Islands</td>
<td>2 (2%)</td>
</tr>
<tr>
<td>Brazil</td>
<td>2 (2%)</td>
</tr>
<tr>
<td>Bahamas</td>
<td>1 (1%)</td>
</tr>
<tr>
<td>Florida</td>
<td>1 (1%)</td>
</tr>
<tr>
<td>Fiji</td>
<td>1 (1%)</td>
</tr>
<tr>
<td>St. Maarten</td>
<td>1 (1%)</td>
</tr>
<tr>
<td>Peru</td>
<td>1 (1%)</td>
</tr>
</tbody>
</table>

72 (75%) cases from Mexico and Central America
Polling Question: Travel Plans

How would the threat of Zika affect your plans to travel to Latin America or the Caribbean?

A. It makes me much less likely to go

B. It makes me somewhat less likely to go

C. It wouldn’t affect my plans because I can use mosquito protection and take other precautions

D. I don’t want to go to Latin America or the Caribbean anyway
Profile of LAC Pregnant Women with Zika (n=16)

- 85% are Latina
 - 60% report Spanish as their first language
 - 90% were born outside of the U.S.
- All traveled to Mexico or Central America
- 40% traveled to a rural area
- 50% had a residence in the country where they traveled and 25% were visiting family
- Most traveled for >30 days, spent >8 hours per day outside, and used mosquito repellent
Additional Surveillance Activities

• National Zika Pregnancy Registry – Pregnant women with Zika are included in the registry and information on the baby collected at birth, 2, 6, and 12 months to determine outcome

• Birth defects surveillance – Information for newborns with specific deficits will be collected and testing may be done to determine if the defect was related to Zika

• Vector surveillance – Mosquito and vector control agencies identify locations of mosquitoes that can spread Zika
Prevention of Zika Infection

• Pregnant women should not travel to Zika affected countries

• All persons traveling to an affected country should take measures to reduce mosquito exposure
 – Insect repellent with an EPA registered ingredient (DEET, Picaridin, IR3535, Oil of Lemon Eucalyptus)
 • Repellents safe for use by pregnant women
 • Most can be used on children aged >2 months
 – Wear long sleeves and pants
 – Stay in places with air conditioning or screens
Vector Control Investigation for Zika Cases

• Conduct surveillance for *Aedes* mosquitos within 150 m radius of case residences in Vector Control districts where *Aedes* previously identified

• If *Aedes* are found, implement control (adulticiding, larvaciding) and prevention

• Provide education on reducing mosquito breeding
Zika Cases and Aedes Mosquito Locations

- 9/38 (24%) investigations positive for *Aedes* mosquitoes, some in areas not previously known to be infested
Will Investigation & Abatement Prevent Local Spread of Zika?

- By the time a patient seeks healthcare and Zika is identified, the period of viremia already would have occurred
 - Mean time from onset of symptoms to case referral to Vector control = 9.3 days
- Most Zika cases are not detected so no abatement occurs
- Thus, the incremental benefit is likely to be low
Detecting Locally Acquired Zika

- Astute clinician testing someone with Zika symptoms
- Positive screen on an asymptomatic blood donor
- Detection from sentinel surveillance (pending)

Los Angeles County is designated by CDC as one of the seven highest risk jurisdictions for local transmission in the U.S.
Invasive *Aedes* Mosquitoes in LA County

- *Aedes albopictus*
 El Monte, 2011

- *Aedes aegypti*
 Los Angeles, 2014
Zika Virus Vectors

- *Aedes aegypti* (Yellow Fever mosquito) is the primary vector
- *Aedes albopictus* (Tiger mosquito) also may transmit
- Peak feeding during day; aggressive!
- Container breeders - lay eggs in small amounts of water around houses
- Eggs resistant to desiccation
Aedes Response: Eliminate Breeding Sites
Inspection of a Yard near a Zika Case
Polling Question: Plant Saucers

What will you do with the saucers you have under flower pots after hearing this presentation?

A. I’ll get rid of them immediately
B. I might get rid of them if the mosquitos are bad this summer
C. I will keep using them since I don’t want to get water all over my porch
D. I don’t have flower pots around my residence
Local Pesticide Application

- Larviciding at the breeding source
- Hand-held adulticiding
- ULV truck-mounted fogging
Aerial Spraying

- Aerial strategy may be used to control a local outbreak
- Very small amount of active ingredient
- Degrades with exposure to sunlight
- No adverse effects
Challenges in Zika Prevention & Response

• Changing travel and personal protective behaviors
• Effective outreach to highest risk communities
• Improved physician diagnosis
• Reducing *Aedes* population
• Public opposition to use of pesticides for mosquito control if local spread occurs
Community Meetings: Zika & Vector Control

• Objective: Obtain information to support programs & policy on mosquito control for a local Zika outbreak
 – Learn community values, preferences and concerns associated with mosquito control techniques
 – Understand motivations, barriers and decision-making process that drive behavior changes related to mosquito control

• 3-hour community meetings
 – Locations: Van Nuys, San Gabriel, Silver Lake, East LA, South LA
 – Local recruitment – participants reflect communities
 – Pre-post surveys, brief presentations, Q & A, small group discussion, electronic polling
Values of Community Meeting Participants

Median percent “Very important”

- Protect babies: 82-98%
- Effectiveness of mosquito control: 68-95%
- Prevent pesticide risks: 75-100%
- Protect bees and other insects: 67-90%
- Cost to the government: 32-69%
Polling Question: Pesticides

If a local Zika outbreak occurred in Los Angeles County, which of the following would be more important to you...

A. Preventing birth defects from Zika?
B. Preventing the risks of pesticide exposure?
Balancing Risks: Birth Defects vs Pesticides

During a Zika outbreak, which of the following would be more important to you:

Preventing birth defects:
67% (range 40-81%)

Preventing risks of pesticide exposure:
33% (range 27-67%)
New Aedes Control Technologies

• Population control by release of *Wolbachia*-infected sterile male mosquitoes
• Spread of larvicide by release of chemical-dusted adult male mosquitoes
• Genetically-modified mosquitoes
Stay Up-to-Date

• Los Angeles County, Department of Public Health
 publichealth.lacounty.gov/acd/vectorZika.htm

• Centers for Disease Control and Prevention